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What is reflectometry?

I Microwaves are launched (nearly) radially inward, usually from
the low field side, at frequencies below the maximum cutoff
frequency

I The complex reflected field amplitude amplitude is anaylzed
to infer

I Plasma profile (group delay)
I Characteristics of density fluctuations. ⇐

I Review articles E. Mazzucato, RSI, 69, 2201 (1998) [1], and
also R. Nazikian etal, Phys. Plasmas, 8, 1040 (2001) [2]



Transmitter launches electron waves

Essentially cold plasma waves (but not for center of ITER, JET,
TFTR) nearly perpendicular propagation, near plasma midplane.
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TFTR Profiles, from [1]



In 1D a density fluctuation produces a phase shift
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In the geometrical optics limit (k0ε)
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No amplitude fluctuations: δR = 0.



1D Full Wave solution confirms sensitivity of δφ
to δn near cutoff

N. Bretz, Phys Fluids B (1992) [3]

115 GHz X-mode outer midplane
launch, TFTR profile (k0 = 24 cm−1)
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Two statistical quantities are measured

If E (ω) is the complex reflected signal at the receiver, then, both the
coherent amplitudes

G (ω) =
|〈E (ω)〉|√
〈|E |2〉

and the cross-correlations,

γ(ω, ω′) =
< |E (ω)E∗(ω′) >√

< |E (ω)|2 >< |E (ω′)|2 >

are available. G (ω) decreases with
increasing fluctuation amplitude. The
variation of γ vs the separation of the
reflecting surfaces

∆r ' (ω − ω′)
∂rc
∂ω

is used to infer the turbulent correlation
length.



1D Simulations demonstrate reflectometer resolution
somewhat greater than Airy width [ref 2]
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In higher dimensionality, multiple competing effects
become important

I Curvature of the reflecting surface
I Refraction
I Diffraction
I Spatially dependent magnetic field orientation b(r)
I Antenna orientation and gain pattern

FDTD propagation codes have been developed to analyze these
effects.

I 2D codes
I Y. Lin, et al, Plasma Phys. Control. Fusion 43 L1, (2001)
I J. C. Hilesheim, et al, Rev. Sci. Instr. 83 10E331 (2012)
I E. Blanco and T. Estrada, Plasma Phys. Control. Fusion 55,

125006 (2013)
I C. Lechte, IEEE Trans. Plasma Science 37, 1099 (2009)

I 3D codes
I S. Hacquin, et al, Journees scientifiques (2013)
I K. S. Reuther, et al, APS, DPP Abstract JP8.021 (2013)



Computational demands are extensive

I Wavelength is much less than machine size
S = R/λ ∼ 102 − 103

I Resolution requires N ∼ 20 S mesh points in each dimension.

I To satisfy Courant condition, operations scale as ND+1 in D
dimensions

I The objective is usually to construct a “synthetic”
reflectometer signal by computing outgoing radiation for each
realization of δn(r) selected from an ensemble

I In order attain acceptable variance, at least hundreds of
realizations are computed



A multiple region model, FWR2D, was developed to lower
the computational requirements

Assume nearly radial propagation

E(~x , t) = <[ exp(−iωt)E (~x , t) ] and
assume ∂E/∂t << ωE
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is solved near the reflection layer.

Away from the reflection layer, the steady state paraxial approximation
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The FW and paraxial solutions are matched on a line R = const.



For each realization of δn(x , z) the complex reflected field
E (z) is computed



FWR2D has been used both to help interpret data and to
optimize exprimental configurations

I Compare with probe and reflectometry data from LAPD
[G. J. Kramer, et al, Rev. Sci. Instr. 74, 1421 (2003)]

I Evidence for reduction of turbulent correlation length associated
with transport barrier in JT-60
[R. Nazikian, etal Phys. Rev. Letters 94 135002 (2005)]

I Compare synthetic with optical imaging capabilities
[G. J. Kramer, et al Plasma Phys. Control Fusion 46 695 (2004)]

I Assess importance of Te dependence of cutoff layer position for
ITER reflectometry.
[G. J. Kramer, et al, Nuc. Fusion 46 S846 (2006)]

I Aiding design of imaging reflectometer experiments on DIII-D
[X. Ren, et al, Rev. Sci. Instr. 83, 10E338 (2012); ibid 85 11D863
(2014)]

I Help interpet edge reflectometer measurements on NSTX
[A. Diallo, et al, Phys Plasmas 20 012505 (2013)]



Results for G and λR from 1 and 2 D simulations were
compared with data from LAPD

I M. Gilmore, W. A. Peebles and X. V. Nguyen, Plasma Phys.
Cntrolled Fusion 42, L1 (2000)

I R = 60 cm, Rc = 50 cm, Ln = 10 cm, O mode at 12 GHz

I Probes measured λT and δn

I Reflectometer measured G and λR

I Computational statistics are accumulated over many (6000 in 1D,
300 in 2D) realizations, where
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I λT is not equal to λR

I The relationship varies with δn



Simulations map (δn/n, λT ) ⇒ (G , λR)

Simulations using a probe measured λT = 1.7 cm, were done for
different δn. The computed and measured cross-correlation agreed
best for the probe measured δn = 9%.



Basis for imaging

I y dependent phase variations are impressed at the reflection
surface xc

I With increasing distance from xc , amplitude variations arise
because of interference

I It may be possible to “unwind” the propagation with a lens
and remove the amplitude fluctuations on an image plane.
[E. Mazzucato, Nucl. Fusion 41, 203 (2001)]

I Alternatively, imaging of a rigidly convecting pattern may be
possible with a single detector by numerically “unwinding” the
phase (back projection). [R. Nazikian, J. Modern Optics 44,
1037 (1997)]



Optical Imaging

Variation of mean intensity and intensity fluctuations along the optical axis for

fluctuation levels (%) 0.1 (black), 0.5 (blue), 1.0 (green), 1.5 (red), 2.0

(magenta), 2.5 (cyan)



Synthetic Imaging – Phase Screen Model

I Assume phase shift δφ(y − vt) << 1 is imposed on field
E (x) exp(−iωt) at x = 0.

I At x = L, each Fourier component ky has a phase shift

∆φ(ky ) = (kx − k0)L = k0L(
√

1− k2
y /k2

0 − 1) ' −
k2
y
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and a frequency shift Ω(ky ) = kyv .

I Apply a phase shift
exp(iΩ2L/2k0v

2) to each
Fourier compononent
E (L, ω + Ω)

I Practically, adjust L to
minimize amplitude
fluctuations

OPTICAL, SYNTHETIC, δn/n = 10−3



Both Techniques provide good fidelity at low fluctuation
levels and long radial correlation lengths

kr = 0.2 cm−1, δn/n = 10−3 Lr ≡ 2/kr



Demonstration that high Te in ITER core importantly
affects reflected field patttern (esp. upper X mode)

I For Te ∼ 20 keV, the relativistic mass shift leads to substantial
movement of the reflection layer [Bindslev, Plasma Phys. Control.
Fusion 35, 1093 (1992)]



Variable curvature of the reflection surface with ω makes
alignment of receiver with transmitter problematic

A combination of high gain transmitting and wide aperture receiving

antennas may be necessary to ensure sufficient collection efficiency



FWR2D has recently been extended to three dimensions
(FWR3D)

I Both toroidal (vs 2D cylindrical) geometry and finite poloidal
field are now included.

I The vector wave equation is solved in the full wave region.
Required parallelization to achieve acceptable throughput.

I Initial application to edge reflectometry in ITER H mode
profile. [G. Kramer, et al, 12th International Reflectometry
Workshop, Julich, May 18-20, 2015]

I ITER modeling needs motivated 3D development
I 3D needed for reflected power estimates



15MA ITER H-mode scenario profiles

Results from



3D and 2D results agree well on symmetry plane z = 0

Bp = 0 for comparison



Reflected field patterns differ markedly for X and O modes

Reflected field pattern is rotated when Bp 6= 0. [P-A Gourdain and W. A.

Peebles, Plasma Phys. Control. Fusion 50, 025004 (2006)] angle?



Fluctuations introduce variance in coupling strength

I 150 GHz X-mode

I Field aligned fluctuations, kr , kz = 1 cm−1 δn/n = .01

I An ensemble of 300 realizations yields average coupling of
-3.8 db with 2.5 dB standard deviation vs -2.6 dB without
fluctuations



O mode coupling strength varies widely

Bi static coupling

Monostatic coupling

I 30 GHz O-mode

I Field aligned fluctuations, kr , kz

= 1 cm−1 δn/n = .05

I 300 realizations yields average
coupling of -15.4 db with 5.0 dB
standard deviation vs -12.4 dB
without fluctuations



Ongoing Work and Plans

I Analyze core reflectometry in ITER

I Compare synthetic signals from XGC1 turbulence
computations for NSTX with measured signals – Lei Shi’s
thesis.

I Quantify effects of diffraction and finite opacity on ECE
imaging of low density edge plasma.

I Requires inclusion of cyclotron absorption

I Interpretation of MIR signals in DIII-D

I Make FWR3D accessible. FWR2D is run as a service on the
PPPL cluster, has a GUI (ELVIS).
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